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The preovulatory gonadotropin surge is induced by progesterone in the cycling female rat or in the
ovariectomized estrogen-treated female rat after adequate estrogen-priming activity is present. The
source of progesterone under physiological conditions could be the ovary and/or the adrenal. Since
the GnRH neuron does not possess estrogen and progesterone receptors, its function is modulated
by other CNS neurotransmitters and neurosecretory products. Among these, excitatory amino acids
(EAAs) have now been shown to play an important role in the regulation of pulsatile gonadotropin
release, induction of puberty and preovulatory and steroid-induced gonadotropin surges. Gluta-
mate, the major endogenous EAA exerts its action through ionotropic and metabotropic receptors.
The ionotropic receptors consist of two major classes, the NMDA (N-methyl-D-aspartate) and
non-NMDA: kainate and AMPA (DL-a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) re-
ceptors. EAA receptors are found in hypothalamic areas involved with reproduction. While both
NMDA and non-NMDA receptors are involved in the regulation of LH secretion, the NMDA
receptors appear to be involved with the regulation of puberty and FSH secretion as well. Steroids
increase the release rates of glutamate and aspartate in the preoptic area during the gonadotropin
surge. Steroids may also regulate the hypothalamic AMPA receptors.
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INTRODUCTION of progesterone namely the adrenal was removed by
adrenalectomy [7]. The administration of progesterone
to ovariectomized rats treated with estrogens in a
manner in which estrogens by themselves do not induce
surge changes in serum ILH and FSH levels, has been
shown to induce a preovulatory type gonadotropin
surge [10-15]. The gonadotropin surge at proestrus is
also attenuated by progesterone antagonists and pro-
gesterone synthesis inhibitors [4, 5,16]. These data
indicate an important physiological role of progester-
one in modulating the gonadotropin surge. In the
estrogen-primed rat, increasing progesterone levels by
the administration of ACTH have been shown to
induce a gonadotropin surge [17].

The GnRH neuron reportedly does not contain
estrogen and progesterone receptors and is largely
regulated by sex steroid modulated neurotransmitters
[18, 19). Prominent among the stimulatory regulators
are the catecholamines while GABA and opioids are the
inhibitory regulators. This area is reviewed by Kalra

The regulation of the preovulatory surge of gonado-
tropins involves a complex interaction of steroids se-
creted by the ovary and the adrenal cortex and other
CNS neurosecretory products ([1-6] for reviews). The
classical concept that estradiol secreted by the maturing
ovarian follicle(s) is the neural trigger for the preovula-
tory surge of gonadotropins was based on the evidence
that ovariectomy or administration of estrogen antag-
onists or antibodies abolished the preovulatory surge of
gonadotropins and estrogen administration reinstated
at least a partial surge. That estradiol was the only
steroid hormone involved has been questioned based
on the fact that progesterone is needed to restore the
full gonadotropin surge and GnRH sensitivity in the
ovariectomized estrogen-primed animal [7-9]. Fur-
thermore, estradiol does not induce a gonadotropin
surge in the ovariectomized animal if the other source
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and Kalra [1]. Neuropeptide Y (see [20] for review) and
galanin [21, 22] have also been shown to be (1) present
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in the hypothalamus, (2) cosecreted in the portal vein
blood with GnRH and (3) to enhance pituitary sensi-
tivity to GnRH in the release of gonadotropins. Evi-
dence has also accumulated that glucocorticoids
may bring about seclective secretion of FSH [12-14].
Gonadal peptides such as inhibin have also been impli-
cated in the regulation of FSH secretion [23].

Added to the above complexity in the regulation of
gonadotropin secretion are the recent observations of
the role of excitatory amino acids (EAAs) in such
regulation (see [6] for review). Endogenous excitatory
amino acids are primarily glutamate and aspartate
with glutamate being the most abundant in the brain.
EAA receptors are considered to be the main trans-
mitter receptors mediating synaptic excitation in the
CNS. EAA receptor mediated neurotransmission has
now been shown to be of considerable importance
in proestrus and estrogen—progesterone-induced pre-
ovulatory gonadotropin surge, the induction of
puberty and the regulation of the pulsatility in gonado-
tropin secretion. This will be the major focus of this
paper.

ENDOGENOUS EAAs AND THEIR RECEPTORS

Glutamate and aspartate are the primary EAA
neurotransmitters in the CNS, with glutamate being
the most abundant amino acid found in the brain.
Strong immunoreactivity for glutamate is found in
suprachiasmatic (SCN), ventromedial (VMN), arcuate
(ARC) and parvocellular and magnocellular paraven-
tricular (PVN) nuclei in the rat hypothalamus [24, 25].
Immunoreactive glutamate axons are in synaptic
contact with dendrites and cell bodies in the medial
basal hypothalamus (MBH), supraoptic nuclei (SON),
ARC, SCN and PVN [24, 25].

EAA receptors can be divided into two major sub-
groups: the ionotropic receptors that regulate cation-
specific ion channels and the metabotropic receptors
that are coupled to G-proteins and modulate the pro-
duction of second messengers. Thus far, only a limited
amount of work has been done on metabotropic EAA
receptors. The ionotropic receptors can be further
subdivided into two classes: the N-methyl-D-aspartate
(NMDA) receptors and the non-NMDA receptors
consisting of kainate and DIL.-x-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA) receptors.
These classifications have been made based on their
selective agonists.

NMDA R1 receptors are found in the organum
vasculosa of the lamina terminalis (OVLT), preoptic
area (POA), ARC, median eminence (ME), SON, SCN
and PVN in the hypothalamus. Kainate receptors are
found in higher concentrations in the ARC, ME and
SCN while other areas of the hypothalamus have lower
concentrations. The distribution of AMPA receptors
are similar to that of the NMDA R1 receptors (see [6]
for review).
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REGULATION OF GONADOTROPIN SECRETION
BY EAAs

The administration of either NMDA, kainate or
AMPA in male and female animals causes a rapid
release of LH within 10-15 min in a variety of animal
species. This topic has been reviewed by Brann and
Mahesh [6]. NMDA has been shown to be able to
release I.LH with every pulse administered whereas
kainate releases LH only after the first injection
[26-28]. The major site of action appears to be the
release of GnRH in the hypothalamus. This is based on
the stimulation of GnRH release by NMDA and
kainate in hypothalamic fragments in vitro [29, 30].
The NMDA effect on GnRH release can be blocked by
a specific NMDA receptor antagonist AP-5. The
NMDA agonists are more potent in OVLT/POA re-
lease of GnRH as compared to non-NMDA agonists,
which appear to be more potent in the ARC-ME region
[31, 32]. This conclusion is further supported by the
observation that GnRH release from ARC-ME frag-
ments induced by glutamate in vitro is blocked by the
AMPA jkainate receptor antagonist, DNQX but not by
the NMDA receptor antagonist AP-7 [31].

PHYSIOLOGICAL ROLE OF EAAs IN THE
PREOVULATORY GONADOTROPIN SURGE

The physiological role of EAAs in the regulation of
the preovulatory surge of gonadotropins in the cycling
adult rat was first demonstrated by Brann and Mahesh
[33] who showed that the administration of the NMDA
antagonist MK801 completely blocked the proestrus
LLH surge and lowered but not blocked mean serum
FSH levels. In the PMSG-primed immature rat in
which PMSG was used to induce the first preovulatory
surge of gonadotrophins, the NMDA antagonist
MKS801 attenuated both the ILH and FSH surge [33].
The third ventricle injection of kainate/ AMPA recep-
tor antagonist DNQX in PMSG-primed immature rats
also attenuated the LLH surge with no effects on the
FSH surge [34]. Thus both NMDA and non-NMDA
neurotransmission is important for the preovulatory
surge of LH with NMDA neurotransmission having a
role in FSH secretion as well.

ROLE OF EAA NEUROTRANSMISSION IN
STEROID-INDUCED GONADOTROPIN SURGE

Since progesterone exerts a pivotal role in the induc-
tion of the preovulatory type gonadotropin surge, in the
ovariectomized animal primed with estrogens, in a
manner that estrogens by themselves do not induce the
surge, the role of NMDA and non-NMDA neuro-
transmission in the progesterone-induced surge was
examined in detail. The NMDA antagonist MK801
administered 1h before the administration of pro-
gesterone completely blocked the LH and FSH surge
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[35] whereas the non-NMDA antagonist DNQX only
blocked the LH but not the FSH surge [34]. The
estrogen-induced LH surge (perhaps with participation
of progesterone from the adrenal) can also be blocked
in immature and adult ovariectomized rats by NMDA
and non-NMDA antagonist [36, 37]. Progesterone-
induced GnRH mRNA is also attenuated by MKg801
[38].

REGULATION OF EAA RECEPTORS AND LIGAND
CONCENTRATIONS BY ESTROGENS AND
PROGESTERONE

The steroid milieu appears to be very important for
the LH-releasing ability of NMDA, as NMDA has
either no effect or is inhibitory to LH secretion in the
ovariectomized animal not treated with estrogens
[3941]. In appropriately estrogen-primed animals,
progesterone appears to significantly enhance the
effects of NMDA on stimulating I.LH release [42, 43].
These observations raise the question of whether ster-
oid treatment results in an increase in EAA receptors
or the ligand itself or a combination of the two.

NMDA receptor binding and NMDA R1 mRNA
levels were not altered in male or female rats after
castration or after castration and testosterone replace-
ment in the male rat and estrogen replacement with or
without progesterone in the female rat [44]. NMDA
and kainate receptor binding also did not change in the
hypothalamus during the onset of puberty [45). These
findings are supported by the work of Kus et al. who
found no effects of castration or dihydrotestosterone
treatment on NMDA R1 mRNA levels in the ARC and
POA regions of the hypothalamus in the adult male rat
[46]. Weiland reported an increase in [*H]glutamate
binding in the POA area of ovariectomized rats treated
with estrogens only when they were administered pro-
gesterone (47]. The increase in [*H]glutamate binding
was not displaced by NMDA and hence represented an
increase in non-NMDA binding sites. Immunohisto-
chemical studies from our laboratory suggest that this
increase may be due to an increase in GluR1 subunit
immunoreactivity representing AMPA receptor bind-
ing sites [6].

In the absence of estrogen and progesterone-
induced changes in NMDA and kainate receptors, the
possibility that progesterone increased glutamate and
aspartate levels in the POA resulting in progesterone-
induced activation of EAA neurotransmission was next
considered. Microdialysis studies by Ping ez al. [48] in
the estrogen-primed ovariectomized rat treated with
progesterone showed that the release rates of glutamate
and aspartate were significantly increased immediately
preceding the progesterone-induced LH surge. Similar
results were obtained by Jarry er al. [49] during the
estrogen-induced LLH surge, while Goroll et al. [50]
reported that the release rates of glutamate and aspar-
tate are increased during puberty in the POA in female
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rats. Thus, estrogen and progesterone-induced EAA
neurotransmission in regulating the gonadotropin
surge appears to be mediated by increase EAA levels in
the POA as well as an increase in AMPA receptors.

ROLE OF EAAs IN THE INDUCTION OF PUBERTY

NMDA treatment on postnatal days 26—29 has been
shown to advance puberty by a number of investigators
and the NMDA antagonist MK801 delays the onset of
puberty [51-54]. This may be due to the synchroniza-
tion of GnRH pulses on a particular day. However, the
non-NMDA agonist kainate administered in a similar
way did not advance puberty and the non-NMDA
antagonist DNQX did not delay the onset of puberty
[30]. It may be of interest to note that the inability of
DNQX to delay puberty may be due to its inability to
block FSH release [34]. Thus, FSH required for fol-
licular maturation can be secreted in spite of DNQX
treatment. Thus, EAAs acting through at least the
NMDA receptors appear to be involved in sexual
maturation during puberty.

ROLE OF EAAs IN PULSATILE LH AND FSH
SECRETION

In ovariectomized female rats both the NMDA re-
ceptor antagonist AP-5 and the non-NMDA receptor
antagonist DNQX significantly suppressed the LLH
pulse frequency, LH pulse amplitude and mean and
trough LH levels [55]. AP-5 suppressed LH pulse
amplitude and mean and trough LH levels more effec-
tively than DNQX. The FSH pulse amplitude and
mean and trough FSH levels were suppressed by AP-5
whereas FSH pulse frequency was not altered. On the
other hand DNQX did not alter any parameter of FSH
secretion. Single injections of AP-5, administered in
doses and a manner similar to the female rat, to the
castrated male rat resulted in suppression of pulse
amplitude but not frequency and mean and trough
levels of LH and FSH [56]. DNQX did not alter any
parameter of LH secretion and only the mean levels of
FSH were slightly reduced. Prolonged administration
of DNQX reduced LH pulse amplitude and mean and
trough levels of LH similar to AP-5. Similar results
were reported in the male rat after systemic adminis-
tration of AP-5 [57]. Thus, EAAs appear to drive the
GnRH pulse generator or modulate its activity with
females showing greater sensitivity than males. Fur-
thermore, the pulsatile discharge of LH and FSH is
more sensitive to NMDA neurotransmission as com-
pared to non-NMDA neurotransmission.

CONCLUSIONS

It is now well established that EAA neurotrans-
mission is an important mechanism involved in pul-
satile I.H and FSH secretion, the induction of puberty,
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the preovulatory gonadotropin surge in the cycling rat
and steroid-induced preovulatory type surges in the
ovariectomized rat. The major site of action is the
hypothalamic secretion of GnRH. Although both
NMDA and non-NMDA receptors are involved, the
NMDA receptor neurotransmission appears to play a
more prominent role. The steroid-induced EAA neuro-
transmission is activated primarily by an increase in the
ligands in the POA and possibly by an increase in
AMPA receptors. The question of whether EAAs
stimulate GnRH through a direct effect of GnRH
neurons or indirectly through the regulation of other
neurotransmitter neurons which synapse on GnRH
neurons is unresolved. GnRH neurons have been re-
ported not to express c-Fos after NMDA stimulation,
while neurons surrounding GnRH neurons express
c-Fos [58, 59]. Less than 5%, of GnRH neurons express
NMDA R1 mRNA levels. EAA receptor and action has
been reported in immortalized GnRH neuronal cell
lines in culture (GT1-1 cells) [60]. However, whether
these cell lines represent the function of the endogen-
ous GnRH neuron 77 v7zo has to be resolved by further
studies.
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